Live Classes: Upskill your knowledge Now!
Chat NowPublished - Tue, 06 Dec 2022
A list of top frequently asked Deep Learning Interview Questions and answers are given below.
Deep learning is a part of machine learning with an algorithm inspired by the structure and function of the brain, which is called an artificial neural network. In the mid-1960s, Alexey Grigorevich Ivakhnenko published the first general, while working on deep learning network. Deep learning is suited over a range of fields such as computer vision, speech recognition, natural language processing, etc.
There are various applications of deep learning:
Both shallow and deep networks are good enough and capable of approximating any function. But for the same level of accuracy, deeper networks can be much more efficient in terms of computation and number of parameters. Deeper networks can create deep representations. At every layer, the network learns a new, more abstract representation of the input.
Overfitting is the most common issue which occurs in deep learning. It usually occurs when a deep learning algorithm apprehends the sound of specific data. It also appears when the particular algorithm is well suitable for the data and shows up when the algorithm or model represents high variance and low bias.
Backpropagation is a training algorithm which is used for multilayer neural networks. It transfers the error information from the end of the network to all the weights inside the network. It allows the efficient computation of the gradient.
Backpropagation can be divided into the following steps:
Fourier transform package is highly efficient for analyzing, maintaining, and managing a large databases. The software is created with a high-quality feature known as the special portrayal. One can effectively utilize it to generate real-time array data, which is extremely helpful for processing all categories of signals.
There are several forms and categories available for the particular subject, but the autonomous pattern represents independent or unspecified mathematical bases which are free from any specific categorizer or formula.
Deep learning has brought significant changes or revolution in the field of machine learning and data science. The concept of a complex neural network (CNN) is the main center of attention for data scientists. It is widely taken because of its advantages in performing next-level machine learning operations. The advantages of deep learning also include the process of clarifying and simplifying issues based on an algorithm due to its utmost flexible and adaptable nature. It is one of the rare procedures which allow the movement of data in independent pathways. Most of the data scientists are viewing this particular medium as an advanced additive and extended way to the existing process of machine learning and utilizing the same for solving complex day to day issues.
Deep learning frameworks or tools are:
Tensorflow, Keras, Chainer, Pytorch, Theano & Ecosystem, Caffe2, CNTK, DyNetGensim, DSSTNE, Gluon, Paddle, Mxnet, BigDL
There are some disadvantages of deep learning, which are:
In neural networking, weight initialization is one of the essential factors. A bad weight initialization prevents a network from learning. On the other side, a good weight initialization helps in giving a quicker convergence and a better overall error. Biases can be initialized to zero. The standard rule for setting the weights is to be close to zero without being too small.
Data normalization is an essential preprocessing step, which is used to rescale values to fit in a specific range. It assures better convergence during backpropagation. In general, data normalization boils down to subtracting the mean of each data point and dividing by its standard deviation.
If the set of weights in the network is put to a zero, then all the neurons at each layer will start producing the same output and the same gradients during backpropagation.
As a result, the network cannot learn at all because there is no source of asymmetry between neurons. That is the reason why we need to add randomness to the weight initialization process.
There are some basic requirements for starting in Deep Learning, which are:
The activation function is used to introduce nonlinearity into the neural network so that it can learn more complex function. Without the Activation function, the neural network would be only able to learn function, which is a linear combination of its input data.
Activation function translates the inputs into outputs. The activation function is responsible for deciding whether a neuron should be activated or not. It makes the decision by calculating the weighted sum and further adding bias with it. The basic purpose of the activation function is to introduce non-linearity into the output of a neuron.
The binary step function is an activation function, which is usually based on a threshold. If the input value is above or below a particular threshold limit, the neuron is activated, then it sends the same signal to the next layer. This function does not allow multi-value outputs.
The sigmoid activation function is also called the logistic function. It is traditionally a trendy activation function for neural networks. The input data to the function is transformed into a value between 0.0 and 1.0. Input values that are much larger than 1.0 are transformed to the value 1.0. Similarly, values that are much smaller than 0.0 are transformed into 0.0. The shape of the function for all possible inputs is an S-shape from zero up through 0.5 to 1.0. It was the default activation used on neural networks, in the early 1990s.
The hyperbolic tangent function, also known as tanh for short, is a similar shaped nonlinear activation function. It provides output values between -1.0 and 1.0. Later in the 1990s and through the 2000s, this function was preferred over the sigmoid activation function as models. It was easier to train and often had better predictive performance.
A node or unit which implements the activation function is referred to as a rectified linear activation unit or ReLU for short. Generally, networks that use the rectifier function for the hidden layers are referred to as rectified networks.
Adoption of ReLU may easily be considered one of the few milestones in the deep learning revolution.
The Leaky ReLU (LReLU or LReL) manages the function to allow small negative values when the input is less than zero.
The softmax function is used to calculate the probability distribution of the event over 'n' different events. One of the main advantages of using softmax is the output probabilities range. The range will be between 0 to 1, and the sum of all the probabilities will be equal to one. When the softmax function is used for multi-classification model, it returns the probabilities of each class, and the target class will have a high probability.
Swish is a new, self-gated activation function. Researchers at Google discovered the Swish function. According to their paper, it performs better than ReLU with a similar level of computational efficiency.
Relu function is the most used activation function. It helps us to solve vanishing gradient problems.
No, Relu function has to be used in hidden layers.
Softmax activation function has to be used in the output layer.
Autoencoder is an artificial neural network. It can learn representation for a set of data without any supervision. The network automatically learns by copying its input to the output; typically,internet representation consists of smaller dimensions than the input vector. As a result, they can learn efficient ways of representing the data. Autoencoder consists of two parts; an encoder tries to fit the inputs to the internal representation, and a decoder converts the internal state to the outputs.
Dropout is a cheap regulation technique used for reducing overfitting in neural networks. We randomly drop out a set of nodes at each training step. As a result, we create a different model for each training case, and all of these models share weights. It's a form of model averaging.
Tensors are nothing but a de facto for representing the data in deep learning. They are just multidimensional arrays, which allows us to represent the data having higher dimensions. In general, we deal with high dimensional data sets where dimensions refer to different features present in the data set.
A Boltzmann machine (also known as stochastic Hopfield network with hidden units) is a type of recurrent neural network. In a Boltzmann machine, nodes make binary decisions with some bias. Boltzmann machines can be strung together to create more sophisticated systems such as deep belief networks. Boltzmann Machines can be used to optimize the solution to a problem.
Some important points about Boltzmann Machine-
The capacity of a deep learning neural network controls the scope of the types of mapping functions that it can learn. Model capacity can approximate any given function. When there is a higher model capacity, it means that the larger amount of information can be stored in the network.
A cost function describes us how well the neural network is performing with respect to its given training sample and the expected output. It may depend on variables such as weights and biases.It provides the performance of a neural network as a whole. In deep learning, our priority is to minimize the cost function. That's why we prefer to use the concept of gradient descent.
An optimization algorithm that is used to minimize some function by repeatedly moving in the direction of steepest descent as specified by the negative of the gradient is known as gradient descent. It's an iteration algorithm, in every iteration algorithm, we compute the gradient of a cost function, concerning each parameter and update the parameter of the function via the following formula:
Where,
Θ - is the parameter vector,
α - learning rate,
J(Θ) - is a cost function
In machine learning, it is used to update the parameters of our model. Parameters represent the coefficients in linear regression and weights in neural networks.
Element-wise matrix multiplication is used to take two matrices of the same dimensions. It further produces another combined matrix with the elements that are a product of corresponding elements of matrix a and b.
A convolutional neural network, often called CNN, is a feedforward neural network. It uses convolution in at least one of its layers. The convolutional layer contains a set of filter (kernels). This filter is sliding across the entire input image, computing the dot product between the weights of the filter and the input image. As a result of training, the network automatically learns filters that can detect specific features.
There are four layered concepts that we should understand in CNN (Convolutional Neural Network):
RNN stands for Recurrent Neural Networks. These are the artificial neural networks which are designed to recognize patterns in sequences of data such as handwriting, text, the spoken word, genomes, and numerical time series data. RNN use backpropagation algorithm for training because of their internal memory. RNN can remember important things about the input they received, which enables them to be very precise in predicting what's coming next.
Recurrent Neural Network uses backpropagation algorithm for training, but it is applied on every timestamp. It is usually known as Back-propagation Through Time (BTT).
There are two significant issues with Back-propagation, such as:
LSTM stands for Long short-term memory. It is an artificial RNN (Recurrent Neural Network) architecture, which is used in the field of deep learning. LSTM has feedback connections which makes it a "general purpose computer." It can process not only a single data point but also entire sequences of data.
They are a special kind of RNN which are capable of learning long-term dependencies.
An autoencoder contains three layers:
Deep Autoencoder is the extension of the simple Autoencoder. The first layer present in DeepAutoencoder is responsible for first-order functions in the raw input. The second layer is responsible for second-order functions corresponding to patterns in the appearance of first-order functions. Deeper layers which are available in the Deep Autoencoder tend to learn even high-order features.
A deep autoencoder is the combination of two, symmetrical deep-belief networks:
The procedure of developing an assumption structure involves three specific actions.
A perceptron is a neural network unit (an artificial neuron) that does certain computations to detect features. It is an algorithm for supervised learning of binary classifiers. This algorithm is used to enable neurons to learn and processes elements in the training set one at a time.
There are two types of perceptrons:
Fri, 16 Jun 2023
Fri, 16 Jun 2023
Fri, 16 Jun 2023
Write a public review